GPU-accelerated simulations for eVTOL aerodynamic analysis
V. Pasquariello, Y. Bunk, S. Eberhardt, P.-H. Huang, J. Matheis, M. Ugolotti, S. Hickel (2023)
AIAA paper 2023-2107. doi: 10.2514/6.2023-2107
The demand for fast, high-fidelity, scale-resolving computational fluid dynamics (CFD) simulations is continuously growing. Especially new emerging aviation technologies, such as electrical vertical take-off and landing aircraft (eVTOL), strongly rely on advanced numerical methods to retain development life-cycle costs and achieving design targets more quickly. This paper presents a cutting-edge large-eddy simulations (LES) solver developed to enable over-night turnaround times for full aircraft simulations on advanced graphics processing unit (GPU) architectures.
Experimental and numerical investigation into the drag performance of dimpled surfaces in a turbulent boundary layer
O.W.G. van Campenhout, M. van Nesselrooij, Y.Y. Lin, B.W. van Oudheusden, S. Hickel (2023)
International Journal of Heat and Fluid Flow 100: 109110. doi: 10.1016/j.ijheatfluidflow.2023.109110
Although several previous studies have reported a potential drag-reducing effect of dimpled surfaces in turbulent boundary layers, there is a lack of replicability across experiments performed by different research groups. To contribute to the dialogue, we scrutinize one of the most studied dimple geometries reported in the literature, which has a dimple diameter of 20 mm and a depth of 0.5 mm.
Wall modeled large-eddy simulation of the VFE-2 delta wing
C. Zwerger, S. Hickel, C. Breitsamter, N.A. Adams (2015)
AIAA paper 2015-2572. doi: 10.2514/6.2015-2572
We performed wall-modeled large-eddy simulation of the flow field around the VFE-2 delta wing, focusing on two aspects: (1) leading-edge bluntness effects on the primary vortex separation and (2) vortex breakdown above the wing and its control. Regarding aspect (1), the VFE-2 delta wing with sharp leading-edge (SLE) and medium radius round leading-edge (MRLE) are considered for three angles of attack α = {13°, 18°, 23°} leading to different overall flow characteristics.
Numerical modeling of separated flows at moderate Reynolds numbers appropriate for turbine blades and unmanned aero vehicles
G. Castiglioni, J.A. Domaradzki, V. Pasquariello, S. Hickel, M. Grilli (2014)
International Journal of Heat and Fluid Flow 49: 92-99. doi: 10.1016/j.ijheatfluidflow.2014.02.003
Flows over airfoils and blades in rotating machinery, for unmanned and micro-aerial vehicles, wind turbines, and propellers consist of a laminar boundary layer near the leading edge that is often followed by a laminar separation bubble and transition to turbulence further downstream. Typical RANS turbulence models are inadequate for such flows. Direct numerical simulation (DNS) is the most reliable, but is also the most computationally expensive alternative. This work assesses the capability of Immersed Boundary (IB) methods and Large Eddy Simulations (LES) to reduce the computational requirements for such flows and still provide high quality results.
Wall-modelled Implicit Large-Eddy Simulation of the RA16SC1 Highlift Configuration
M. Meyer, S. Hickel, C. Breitsamter, N.A. Adams (2013)
AIAA paper 2013-3037. doi: 10.2514/6.2013-3037
Industrially applied Computational Fluid Dynamics still faces a challenge when it comes to the accurate prediction of the complex flow over realistic highlift configurations. In this paper we demonstrate that the flow over the 3-element RA16SC1 highlift configuration can be efficiently and accurately predicted with Implicit Large-Eddy Simulation (ILES) on Cartesian adaptive grids.
Integrated experimental-numerical analysis of high agility aircraft wake vortex evolution
J.-U. Klar, C. Breitsamter, S. Hickel, N.A. Adams (2011)
Journal of Aircraft 48: 2050-2058. doi: 10.2514/1.C031438
The presented investigation includes a combined experimental–numerical approach to quantify the wake vortex system of a high-agility aircraft from the near field up to the far field.